Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

نویسندگان

  • Sang-Hoon Park
  • Seung-Beom Yoon
  • Hyun-Kyung Kim
  • Joong Tark Han
  • Hae-Woong Park
  • Joah Han
  • Seok-Min Yun
  • Han Gi Jeong
  • Kwang Chul Roh
  • Kwang-Bum Kim
چکیده

Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp(2) carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp(2) carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors

In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...

متن کامل

Carbon nanomaterials for high-performance supercapacitors

Owing to their high energy density and power density, supercapacitors exhibit great potential as highperformance energy sources for advanced technologies. Recently, carbon nanomaterials (especially, carbon nanotubes and graphene) have been widely investigated as effective electrodes in supercapacitors due to their high specific surface area, excellent electrical and mechanical properties. This ...

متن کامل

Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping.

MnO2 is considered one of the most promising pseudocapactive materials for high-performance supercapacitors given its high theoretical specific capacitance, low-cost, environmental benignity, and natural abundance. However, MnO2 electrodes often suffer from poor electronic and ionic conductivities, resulting in their limited performance in power density and cycling. Here we developed a "conduct...

متن کامل

Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbidederived carbon, zeolitetemplated carbon, carbon aerogels, carbon nanotubes, onionlike carbon, and graphene

Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacit...

متن کامل

Synthesis and applications of carbon nanomaterials for energy generation and storage

The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of product...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014